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Part | - Basics

The first part summarizes some of the main aspects of data structures and algorithms, such as implementation and usage.

This chapter consists of the following sections.
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Data Structure

This chapter describes the fundamental data structures and their implementations.



String

String-related problems often appear in interview questions. In actual development, strings are also frequently used.
Summarized here are common uses of strings in C++, Java, and Python.

Python

sl = str()
# in python, “''® and """' are the same
s2 = "shaunwei" # 'shaunwei'

s2len = len(s2)

# last 3 chars

s2[-3:] # wei

s2[5:8] # wei

s3 = s2[:5] # shaun

s3 += 'wel' # return 'shaunwei'

# list in python is same as ArrayList in java
s2list = list(s3)

+ string at index 4

s2[4] # 'n'

# find index at first

s2.index('w') # return 5, if not found, throw ValueError
s2.find('w') # return 5, if not found, return -1

In Python, there's no StringBuffer or StringBuilder. However, string manipulations are fairly efficient already.

Java

String s1 = new String();

String s2 = "billryan";

int s2Len = s2.length();

s2.substring(4, 8); // return "ryan"

StringBuilder s3 = new StringBuilder(s2.substring(4, 8));
s3.append("bill");

String s2New = s3.toString(); // return "ryanbill"

// convert String to char array

char[] s2Char = s2.toCharArray();

// char at index 4

char ch = s2.charAt(4); // return 'r'

// find index at first

int index = s2.indexOf('r'); // return 4. if not found, return -1

The difference between StringBuffer and StringBuilder is that the former guarantees thread safety. In a single-threaded
environment, StringBuilder is more efficient.



Quick Sort

In essence, quick sort is an application of divide and conquer strategy. There are usually three steps:

Step1. Pick a pivot -- a random element. Step2. Partition -- put the elements smaller than pivot to its left and greater ones
to its right. Step3. Recurse -- apply above steps until the whole sequence is sorted.

out-in-place implementation

Recursive implementation is easy to understand and code. Python 1ist comprehension looks even nicer:

def g
print(alist)
if len(alist) <=
return alist
elser
pivot = alist[0]
return gsortil([x for x in alist[1:] if x < pivot]) + \
[pivot] + \
gsortil([x for x in alist[1:] if x >= pivot])

unsortedArray = [6, 5, 3, 1, 8, 7, 2, 4]
print(gsorti(unsortedArray))

The output :

[6, 5, 3, 1, 8, 7, 2, 4]
[5, 3, 1, 2, 4]

[3, 1, 2, 4]

(1, 2]

(1

[2]

[4]

(1

(8, 71

[7]

(1

[1, 2, 3, 4, 5,6, 7, 8]

Despite of its simplicity, above quick sort code is not that 'quick’: recursive calls keep creating new arrays which results in
high space complexity. So 1ist comprehension is not proper for quick sort implementation.

Complexity
Take a quantized look at how much space it actually cost.

In the best case, the pivot happens to be the median value, and quick sort partition divides the sequence almost equally,
so the recursions' depth is logn . As to the space complexity of each level (depth), it is worth some discussion.

A common mistake can be: each level contains »n elements, then the space complexity is surely O(n) . The answer is right,
while the approach is not. As we know, space complexity is usually measured by memory consumption of a running
program. Take above out-in-place implementation as example, in the best case, each level costs half as much memory
as its upper level does . Sums up to be:

di—om = 21



For more detail, refer to the picture below as well as above python code. The first level of recursion saves 8 values, the
second 4, and so on so forth.

In the worst case, it will take 7 — 1 times of swap on level i. Sums up to be:

Yron—it1)= O(n?)

2 CR?/

in-place implementation

one index for partition

One in-place implementation of quick sort is to use one index for partition, as the following image illustrates. Take example
of [6, 5, 3, 1, 8, 7, 2, 4] again,l and u stand for the lower bound and upper bound of index respectively. i traverses

and m maintains index of partition which varies with i. target is the pivot.



Quick Sort

For each specific value of ¢, z[¢] will take one of the follwing cases: if z[i] > t , ¢ increases and goes on traversing; else if
z[i] < t, z[¢] will be swapped to the left part, as statement swap(x[++m], x[i]) does. Partition is done when i == u , and
then we apply quick sort to the left and right parts, recursively. Under what circumstance does recursion terminate? Yes, 1

>= u .

Python

#1/usr/bin/env python

def gsort2(alist, 1, u):
print(alist)
if 1 >= u:
return

m=1
for i in xrange(l + 1, u + 1):
if alist[i] < alist[1]:
m+= 1
alist[m], alist[i] = alist[i], alist[m]
# swap between m and 1 after partition, important!
alist[m], alist[1l] = alist[1l], alist[m]
gsort2(alist, 1, m - 1)
gsort2(alist, m + 1, u)

unsortedArray = [6, 5, 3, 1, 8, 7, 2, 4]
print(gsort2(unsortedArray, ©, len(unsortedArray) - 1))

Java

19



public class Sort {
public static void main {
int unsortedArray[] = new int[]{6, 5, 3, 1, 8, 7, 2, 4};
quickSort(unsortedArray);
System.out.println("After sort: ");
for (int item : unsortedArray) {

System.out.print(item + " ");
}
}
public static void quickSorti(int int int {
for (int item : array) {
System.out.print(item + " ");
}
System.out.println();
if (1 >= u) return;
int m = 1;
for (int i =1 + 1; i <= u; i++) {
if (array[i] < array[l]) {
m+= 1;
int temp = array[m];
array[m] = array[i];
array[i] = temp;
}
}
// swap between array[m] and array[l]
// put pivot in the mid
int temp = array[m];
array[m] = array[1l];
array[l] = temp;
quickSorti(array, 1, m - 1);
quickSorti(array, m + 1, u);
}
public static void quickSort(int {
quickSorti(array, 0, array.length - 1);
}

The swap of z[:] and z[m] should not be left out.

The output:
[6, 5, 3, 1, 8, 7, 2, 4]
[4, 5, 3, 1, 2, 6, 8, 7]
[2, 38, 1, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 7, 8]
[1, 2, 3, 4, 5, 6, 7, 8]

Two-way partitioning

Another implementation is to use two indexes for partition. It speeds up the partition by working two-way simultaneously,
both from lower bound toward right and from upper bound toward left, instead of traversing one-way through the sequence.

The gif below shows the complete processon [e6, 5, 3, 1, 8, 7, 2, 4] .



6 5 3 1 8 7 2 4

1. Take 3 as the pivot.

2. Let pointer 10 start with number 6 and pointer hi start with number 4 . Keep increasing 1o until it comes to an
element = the pivot, and decreasing hi until it comes to an element < the pivot. Then swap these two elements.

3. Increase 1o and decrease hi (both by 1), and repeat step 2 so that 10 comesto 5 and hi comesto 1 .Swap
again.

4. Increase 1lo and decrease hi (both by 1) until they meet (at 3 ). The partition for pivot 3 ends. Apply the same
operations on the left and right part of pivot 3 .

A more general interpretation:

1. Init7 and j to be at the two ends of given array.
2. Take the first element as the pivot.
3. Perform partition, which is a loop with two inner-loops:
o One that increases i, until it comes to an element = pivot.
o The other that decreases j, until it comes to an element < pivot.
4. Check whether : and j meet or overlap. If so, swap the elements.

Think of a sequence whose elements are all equal. In such case, each partition will return the middle element, thus

recursion will happen logn times. For each level of recursion, it takes n times of comparison. The total comparison is nlogn
then programming_pearls

Python

print(alist)
if lower >= upper:
return

pivot = alist[lower]
left, right = lower + 1, upper
while left <= right:
while left <= right and alist[left] < pivot:
left +=
while left <= right and alist[right] >= pivot:
right -=
if left > right:
break

alist[left], alist[right] = alist[right], alist[left]
alist[lower], alist[right] = alist[right], alist[lower]

gsort3(alist, lower, right - 1)
gsort3(alist, right + 1, upper)

unsortedArray = [6, 5, 3, 1, 8, 7, 2, 4]
print(gsort3(unsortedArray, 0, len(unsortedArray) - 1))



Java

public class Sort {
public static void main {
int unsortedArray[] = new int[]{6, 5, 3, 1, 8, 7, 2, 4};
quickSort(unsortedArray);
System.out.println("After sort: ");
for (int item : unsortedArray) {
System.out.print(item + " ");

public static void quickSort2(int int int {
for (int item : array) {
System.out.print(item + " ");

}
System.out.println();

if (1 >= u) return;
int pivot = array[l];
int left = 1 + 1;
int right = u;
while (left <= right) {
while (left <= right && array[left] < pivot) {
left++;
}
while (left <= right && array[right] >= pivot) {
right--;
}
if (left > right) break;
// swap array[left] with array[right] while left <= right
int temp = array[left];
array[left] = array[right];
array[right] = temp;
}
/* swap the smaller with pivot */
int temp = array[right];
array[right] = array[1];
array[l] = temp;

quickSort2(array, 1, right - 1);
quickSort2(array, right + 1, u);

public static void quickSort(int {
quickSort2(array, 0, array.length - 1);

The output:

(6,
[2,
[1,
[1,
[1,
[1,
[1,
[1,
(1,
(1,
[1,

4]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
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Having analyzed three implementations of quick sort, we may grasp one key difference between quick sort and merge sort :

1. Merge sort divides the original array into two sub-arrays, and merges the sorted sub-arrays to form a totally ordered
one. In this case, recursion happens before processing(merging) the whole array.



2. Quick sort divides the original array into two sub-arrays, and then sort them. The whole array is ordered as soon as the
sub-arrays get sorted. In this case, recursion happens after processing(partition) the whole array.

Robert Sedgewick's presentation on quick sort is strongly recommended.

Reference

Quicksort - wikepedia

Quicksort | Robert Sedgewick

Programming Pearls Column 11 Sorting - gives an in-depth discussion on insertion sort and quick sort

Quicksort Analysis

programming_pearls p.,oamming Pearls «


http://algs4.cs.princeton.edu/23quicksort/
https://en.wikipedia.org/wiki/Quicksort
http://algs4.cs.princeton.edu/23quicksort/
http://7xojrx.com1.z0.glb.clouddn.com/docs/algorithm-exercise/docs/quicksort_analysis.pdf

String

String

String related topics are discussed in this chapter.

In order to re-use most of the memory of an existing data structure, internal implementation of string is immutable in
most programming languages(Java, Python). Take care if you want to modify character in place.
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strStr

Question

e leetcode: Implement strStr() | LeetCode OJ
e lintcode: lintcode - (13) strstr

Problem Statement

For a given source string and a target string, you should output the first index(from 0) of target string in source string.

If target does not exist in source, just return -1 .

Example
If source = "source" and target= "target" ,return -1 .

If source = "abcdabcdefg" and target= "bcd" , return 1 .

Challenge

O(n2) is acceptable. Can you implement an O(n) algorithm? (hint: KMP)

Clarification

Do | need to implement KMP Algorithm in a real interview?

e Not necessary. When you meet this problem in a real interview, the interviewer may just want to test your basic
implementation ability. But make sure your confirm with the interviewer first.

Problem Analysis

It's very straightforward to solve string match problem with nested for loops. Since we must iterate the target string, we can
optimize the iteration of source string. It's unnecessary to iterate the source string if the length of remaining part does not
exceed the length of target string. We can only iterate the valid part of source string. Apart from this naive algorithm, you
can use a more effective algorithm such as KMP.

Python

class
def 3
if source is None or target is None:
return

for i in range(len(source) - len(target) + 1):
for j in range(len(target)):
if source[i + j] != target[j]:
break
else:
return i
return


https://leetcode.com/problems/implement-strstr/
http://www.lintcode.com/en/problem/strstr/

int strStr(char char {

if (haystack == || needle == ) return H
const int len_h = (haystack);
const int len_n = (needle);
for (int 1 = 0; 1 < len_h - len_n + 1; i++) {
int j = 0;

for (; j < len_n; j++) {
if (haystack[i+j] != needle[j]) {

break;
}

}

if (j == len_n) return i;
}
return -1;

3
C++

class Solution {
public:
int strsStr {

if (haystack.empty() && needle.empty()) return 0;
if (haystack.empty()) return ;
if (needle.empty()) return 0;
// in case of overflow for negative
if (haystack.size() < needle.size()) return 5

for (int i = 0; i < haystack.size() - needle.size() + 1; i++) {
risize_type j = 0;
for (; j < needle.size(); j++) {
if (haystack[i + j] != needle[j]) break;
}

if (j == needle.size()) return i;

return g

Java

public class Solution {
public int strStr {
if (haystack == null && needle == null) return 0;
if (haystack == null) return -1;
if (needle == null) return 0;

for (int i = 0; i < haystack.length() - needle.length() + 1; i++) {
int j = 0;
for (; j < needle.length(); j++) {
if (haystack.charAt(i+j) !'= needle.charAt(j)) break;

3
if (j == needle.length()) return i;

return -1;

Source Code Analysis

1. corner case: haystack(source) and needle(target) may be empty string.



2. code convention:
o space is needed for ==
o use meaningful variable names
o put a blank line before declaration int i, j;
3. declare j outside for loop if and only if you want to use it outside.

Some Pythonic notes: 4. More Control Flow Tools section 4.4 and if statement - Why does python use 'else' after for and
while loops?

Complexity Analysis

nested for loop, O((n — m)m) for worst case.


https://docs.python.org/3/tutorial/controlflow.html
http://stackoverflow.com/questions/9979970/why-does-python-use-else-after-for-and-while-loops

Partition Array by Odd and Even

Question

e lintcode: (373) Partition Array by Odd and Even
e Segregate Even and Odd numbers - GeeksforGeeks
Partition an integers array into odd number first and even number second.

Example
Given [1, 2, 3, 4], return [1, 3, 2, 4]

Challenge
Do it in-place.

Solution

Use two pointers to keep the odd before the even, and swap when necessary.

Java

public class Solution {
/o

* @)
(

param nums: an array of integers

*

@return: nothing

x/
public void partitionArray(int {
if (nums == null) return;

int left = 0, right = nums.length -
while (left < right) {
// odd number
while (left < right && nums[left] % 1= 0) {
left++;

’

}
// even number
while (left < right && nums[right] % 2 == 0) {
right--;
}
// swap
if (left < right) {
int temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;

C++


http://www.lintcode.com/en/problem/partition-array-by-odd-and-even/
http://www.geeksforgeeks.org/segregate-even-and-odd-numbers/

void int {
if (nums.empty()) return;

int i=0, j=nums.size()-1;
while (i<j) {

while (i<j && nums[i]%2!=0) i++;
while (i<j && nums[]j]%2==0) j--;
if (i '= j) swap(nums[i], nums[j]);

Src Code Analysis

Be careful not to forget 1eft < right in while loop condition.

Complexity

To traverse the array, time complexity is O(n). And maintain two pointers mean O(1) space complexity.



Kth Largest Element in an Array

Tags: Quick Sort, Divide and Conquer, Medium

Question

e leetcode: (215) Kth Largest Element in an Array
e lintcode: (5) Kth Largest Element

Problem Statement

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth
distinct element.

For example,
Given [3,2,1,5,6,4] and k =2, return 5.

Note:
You may assume K is always valid, 1 < k < array's length.

Credits:

Special thanks to @mithmatt for adding this problem and creating all test cases.

Solution

Trail and error: Comparison-based sorting algorithms don't work because they incur O(n2) time complexity. Neither does
Radix Sort which requires the elements to be in a certain range. In fact, Quick Sort is the answer to kth largest problems
(Here are code templates of quick sort).

By quick sorting, we get the final index of a pivot. And by comparing that index with « , we decide which side (the greater
or the smaller) of the pivot to recurse on.

Java


https://leetcode.com/problems/kth-largest-element-in-an-array/
http://www.lintcode.com/en/problem/kth-largest-element/
https://leetcode.com/discuss/user/mithmatt
http://algorithm.yuanbin.me/zh-hans/basics_sorting/quick_sort.html

public class Solution {

public int findKthLargest(int int {
if (nums == null || nums.length == 0) {
return Integer.MIN_VALUE;
}
int kthLargest = gSort(nums, O, nums.length - 1, k);
return kthLargest;
}
private int gSort(int int int int {
if (left >= right) {
return nums[right];
}
int m = left;
for (int i = left + 1; i <= right; i++) {
if (nums[i] > nums[left]) {
m++;
swap(nums, m, i);
}
}
swap(nums, m, left);
if (k ==m+ 1) {
return nums[m];
} else if (k >m + 1) {
return gSort(nums, m + 1, right, k);
} else {
return gSort(nums, left, m - 1, k);
}
}
private void swap(int int int {
int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp;
}
}
Src Code Analysis

Two cases when the recursion ceases: a. left bound equals right bound; b. final index of pivot equals K.

Since 'Kth largest' is wanted, numbers greater than pivot are placed to the left and numbers smaller to the right, which is a
little different with typical quick sort code.

Complexity

Time Complexity. Worse case (when the array is sorted): n+n-1+...+1=0(n"2) . Amortized complexity: n + n/2 + n/4
+...+1=0(2n)=0(n) .

Space complexity is O(1) .



Search in Rotated Sorted Array

Question

e leetcode: (33) Search in Rotated Sorted Array
e lintcode: (62) Search in Rotated Sorted Array

Problem Statement

Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i,e., 124567 mightbecome 456 7012).
You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

Example
For [4, 5, 1, 2, 3] and target=1,return 2 .

For [4, 5, 1, 2, 3] and target=0 ,return -1 .
Challenge

O(logN) time

Solution1 - work on sorted subarray

Draw it. Rotated sorted array will take one of the following two forms:

Binary search does well in sorted array, while this problem gives an unordered one. Be patient. It is actually a combination
of two sorted subarrayss. The solution takes full advantage of this. BTW, another approach can be comparing target with
A[mid] , but dealing with lots of cases is kind of sophisticated.

C++



https://leetcode.com/problems/search-in-rotated-sorted-array/
http://www.lintcode.com/en/problem/search-in-rotated-sorted-array/

Search in Rotated Sorted Array

Jxx
* ARHEforkA
* http://www.jiuzhang.com/solutions/search-in-rotated-sorted-array/
*/
class Solution {
Jxx
* param A : an integer ratated sorted array

* param target : an integer to be searched
* return : an integer
*/

public:

int search(vector<int> &A, int target) {

if (A.empty()) {
return -1;

vector<int>::size_type start = 0;
vector<int>::size_type end = A.size() - 1;
vector<int>::size_type mid;

while (start + 1 < end) {

mid = start + (end - start) / 2;

if (target == A[mid]) {
return mid;

}

if (A[start] < A[mid]) {
// situation 1, numbers between start and mid are sorted
if (A[start] <= target && target < A[mid]) {

end = mid;
} else {
start = mid;
}
} else {

// situation 2, numbers between mid and end are sorted
if (A[mid] < target && target <= A[end]) {

start = mid;
} else {

end = mid;

if (A[start] == target) {
return start;

}
if (A[end] == target) {
return end;

}

return -1;

Java
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public class {

public int int int {
if (A == null || A.length == 0) return -1;
int 1b = 0, ub = A.length - 1;

while (1b + 1 < ub) {
int mid = 1b + (ub - 1b) / 2;
if (A[mid] == target) return mid;

if (A[mid] > A[1lb]) {

if (A[1lb] <= target && target <= A[mid]) {

ub = mid;
} else {
1b = mid;
}
} else {

if (A[mid] <= target && target <= A[ub]) {

1b = mid;
} else {
ub = mid;

}

}

if (A[1lb] == target) {
return lb;

} else if (A[ub] == target) {
return ub;

}

return -1;

Source Code Analysis

1. If target == A[mid] , just return.

2. Observe the two sorted subarrays, we can find that the least one of the left is greater than the biggest of the right. So if
A[start] < A[mid] , then interval [start, mid] will be sorted.

Do binary search on A[start] ~ A[mid] on condition that A[start] <= target <= A[mid] .

Or do binary search on A[mid]~A[end] on condition that A[mid] <= target <= A[end] .

If while loop ends and none A[mid] hits, then examine A[start] and A[end] .

Return -1 if target is not found.

S

Complexity

The time complexity is approximately O(log n).

Solution2 - double binary search

Do binary search twice: first on the given array to find the break point; then on the proper piece of subarray to search for
the target.

It may take a small step to see why the given array is binary-searchable. Though a rotated array itself is neither sorted nor
monotone, there is implicit monotonicity. All elements on the left of break point are 2A[0], and those on the right of break
point are <A[0]. In a binary search, we keep narrowing the search scope by dropping the left or right half of the sequence,



and here in the rotated array, we can do that much similarly.

To formalize, define an array A' that A'[i] = A[i] < A[0] ? true : false .If A is [4, 5,6, 7, 0, 1, 2], A" willbe
[false, false, false, false, true, true, true] . Surely A' monotone.

Java

public class Solution {

Jr
*@param A : an integer rotated sorted array
*@param target : an integer to be searched
*return : an integer
*/

public int search(int[] A, int target) {

if (A == null || A.length == 0) {
return -1;

int p = findBreakPoint(A);
if (target >= A[0]) {
// search in [lo, segPoint]
return binSearch(A, target, 0, p);
} else {
// search in [segPoint, hi]
return binSearch(A, target, p, A.length - 1);

private int findBreakPoint(int[] A) {
// A[index] < A[Q], min[index]
int index;

int lo = 0, hi = A.length - 1, segvalue = A[0];
while (lo + 1 < hi) {

int md = lo + (hi - lo)/2;

if (A[md] > segvalue) {

lo = md;
} else {
hi = md;

}

index = A[lo] < segvalue ? lo : hi;

return index;

private int binSearch(int[] A, int target, int lo, int hi) {
while (lo + 1 < hi) {
int md = lo + (hi - lo) / 2;
if (A[md] == target) {
lo = md;
} else if (A[md] < target) {
lo = md;
} else {

hi = md;

if (A[lo] == target) {
return lo;

}

if (A[hi] == target) {
return hi;

}

return -1;



Complexity

The first binary search costs O(log n) time complexity, and the second costs no more than O(log n).



Linked List

This section includes common operations on linked list, such as deletion, insertion, and merging.
Frequently made mistakes:

e Not updating runner-node when traversing linked list
e Not recording head node before traversing
e returning incorrect pointer to node

The image below serves as a summarization.

Iinsertion sort

merge sort

delate all dup

merge two / aoed
{ detele all dup but one
merge N I m N

specified value
Deletion

all dup but one
/ unsortad

n-th from end of list
reverse all Linked List

reverse range Reverse
tesify palindrome
swap in pairs
reverse-order

tesify cycle
m | find entry of cycle

a trivial node

Deep copy




Reverse Linked List

Question

e leetcode: (206) Reverse Linked List | LeetCode OJ
e lintcode: (35) Reverse Linked List

Reverse a linked list.

Example
For linked list 1->2->3, the reversed linked list is 3->2->1

Challenge
Reverse it in-place and in one-pass

Solution1 - Non-recursively

It would be much easier to reverse an array than a linked list, since array supports random access with index, while singly
linked list can ONLY be operated through its head node. So an approach without index is required.

Think about how '1->2->3' can become '3->2->1". Starting from '1', we should turn '1->2" into '2->1', then '2->3' into '3->2',
and so on. The key is how to swap two adjacent nodes.

temp = head -> next;
head->next = prev;
prev = head;

head = temp;

The above code maintains two pointer, prev and head , and keeps record of next node before swapping. More detailed
analysis:


https://leetcode.com/problems/reverse-linked-list/
http://www.lintcode.com/en/problem/reverse-linked-list/

Reverse Linked List

. Keep record of next node

. change head->next t0 prev

. update prev with head , to keep moving forward

. update head with the record in step 1, for the sake of next loop

Python




Reverse Linked List

# Definition for singly-linked list.

# class ListNode:

#
#
#

def __init_ (self, x):
self.val = x
self.next = None

class Solution:

# @param {ListNode} head
# @return {ListNode}
def reverseList(self, head):
prev = None
curr = head
while curr is not None:
temp = curr.next
curr.next = prev
prev = curr
curr = temp
# fix head
head = prev

return head

C++

/

* %
*
*
*
*
*

*

*/

Definition for singly-linked list.
struct ListNode {

int val;

ListNode *next;

ListNode(int x) : val(x), next(NuLL) {}
};

class Solution {
public:

ListNode* reverse(ListNode* head) {
ListNode *prev = NULL;
ListNode *curr = head;
while (curr != NULL) {
ListNode *temp = curr->next;
curr->next = prev;
prev = curr;
curr = temp;
}
// fix head
head = prev;

return head;

Java
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public class {
public ListNode {

ListNode prev = null;

ListNode curr = head;

while (curr != null) {
ListNode temp = curr.next;
curr.next = prev;
prev = curr;
curr = temp;

}
head = prev;

return head;

Source Code Analysis

Already covered in the solution part. One more word, the assignment of prev is neat and skilled.

Complexity

Traversing the linked list leads to O(n) time complexity, and auxiliary space complexity is O(1).

Solution2 - Recursively

Three cases when the recursion ceases:

1. If given linked list is null, just return.

2. If given linked list has only one node, return that node.

3. If given linked list has at least two nodes, pick out the head node and regard the following nodes as a sub-linked-list,
swap them, then recurse that sub-linked-list.

Be careful when swapping the head node (refer as nodey ) and head of the sub-linked-list (refer as nodex ): First, swap
nodey and nodex ; Second, assign null to nodey->next (or it would fall into infinite loop, and tail of result list won't point
to nuil ).

Python



Reverse Linked List

Definition of ListNode
class ListNode(object):

def __init_ (self, val, next=None):
self.val = val
self.next = next

class Solution:
i
@param head: The first node of the linked list.
@return: You should return the head of the reversed linked list.
Reverse it in-place.
win
def reverse(self, head):
# casel: empty list
if head is None:
return head
# case2: only one element list
if head.next is None:
return head
# case3: reverse from the rest after head
newHead = self.reverse(head.next)
# reverse between head and head->next
head.next.next = head
# unlink list from the rest
head.next = None

return newHead

C++

/**
* Definition of ListNode

*

* class ListNode {

* public:
* int val;
* ListNode *next;
*
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
*}
*/
class Solution {
public:
Jxx

* @param head: The first node of linked list.
* @return: The new head of reversed linked list.
*/
ListNode *reverse(ListNode *head) {
// casel: empty list

if (head == NULL) return head;
// case2: only one element list
if (head->next == NULL) return head;

// case3: reverse from the rest after head
ListNode *newHead = reverse(head->next);
// reverse between head and head->next
head->next->next = head;

// unlink list from the rest

head->next = NULL;

return newHead;
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Java

Vs
* Definition for singly-linked list.
* public class ListNode {

* int val;

* ListNode next;
* ListNode(int x) { val = x; }
*}
*/
public class Solution {
public ListNode reverse(ListNode head) {
// casel: empty list
if (head == null) return head;
// case2: only one element list
if (head.next == null) return head;
// case3: reverse from the rest after head
ListNode newHead = reverse(head.next);
// reverse between head and head->next
head.next.next = head;
// unlink list from the rest
head.next = null;

return newHead;

Source Code Analysis

case1 and case2 can be combined.What case3 returns is head of reversed list, which means it is exact the same Node (tail
of origin linked list) through the recursion.

Complexity

The depth of recursion: O(n). Time Complexity: O(N). Space Complexity (without considering the recursion stack): O(1).

Reference

o AWM EFFAM MR REEA (Bt i) - AMifo Rt - 1ERE
e data structures - Reversing a linked list in Java, recursively - Stack Overflow

o RitRGEANWATI (BI5EEE > Crt) | TOME  WBET

e iteratively and recursively Java Solution - Leetcode Discuss


http://www.cnblogs.com/kubixuesheng/p/4394509.html
http://stackoverflow.com/questions/354875/reversing-a-linked-list-in-java-recursively
http://ceeji.net/blog/reserve-linked-list-cpp/
https://leetcode.com/discuss/37804/iteratively-and-recursively-java-solution
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