/Hgm#m\

Q@ http://algorithm.yuanbin.me

Preface
FAQ
Guidelines for Contributing
Contributors
Part | - Basics
Basics Data Structure
String
Linked List
Binary Tree
Huffman Compression
Queue
Heap
Stack
Set
Map
Graph
Basics Sorting
Bubble Sort
Selection Sort
Insertion Sort
Merge Sort
Quick Sort
Heap Sort
Bucket Sort
Counting Sort
Radix Sort
Basics Algorithm
Divide and Conquer
Binary Search
Math
Greatest Common Divisor
Prime
Knapsack
Counting Problem
Probability
Shuffle
Bitmap
Basics Misc

Bit Manipulation

Table of Contents

1.1
1.2
1.21
1.2.2
1.3
1.4
1.41
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9
1.4.10
1.5
1.5.1
1.5.2
153
154
1.5.5
1.5.6
1.5.7
1.5.8
1.59
1.6
1.6.1
1.6.2
1.6.3
1.6.3.1
1.6.3.2
1.64
1.6.5
1.6.6
1.6.6.1
1.6.7
1.7
1.71

Part Il - Coding 1.8

String 1.9
strStr 1.91
Two Strings Are Anagrams 1.9.2
Compare Strings 193
Anagrams 1.94
Longest Common Substring 1.95
Rotate String 1.9.6
Reverse Words in a String 1.9.7
Valid Palindrome 1.9.8
Longest Palindromic Substring 1.9.9
Space Replacement 1.9.10
Wildcard Matching 1.9.11
Length of Last Word 1.9.12
Count and Say 1.9.13

Integer Array 1.10
Remove Element 1.10.1
Zero Sum Subarray 1.10.2
Subarray Sum K 1.10.3
Subarray Sum Closest 1.10.4
Recover Rotated Sorted Array 1.10.5
Product of Array Exclude ltself 1.10.6
Partition Array 1.10.7
First Missing Positive 1.10.8
2 Sum 1.10.9
3 Sum 1.10.10
3 Sum Closest 1.10.11
Remove Duplicates from Sorted Array 1.10.12
Remove Duplicates from Sorted Array |l 1.10.13
Merge Sorted Array 1.10.14
Merge Sorted Array Il 1.10.15
Median 1.10.16
Partition Array by Odd and Even 1.10.17
Kth Largest Element 1.10.18

Binary Search 1.1
Binary Search 1.111
Search Insert Position 1.11.2
Search for a Range 1.11.3
First Bad Version 1.11.4
Search a 2D Matrix 1.11.5
Search a 2D Matrix Il 1.11.6
Find Peak Element 1.11.7

Search in Rotated Sorted Array 1.11.8

Search in Rotated Sorted Array I 1.11.9
Find Minimum in Rotated Sorted Array 1.11.10
Find Minimum in Rotated Sorted Array |l 1.11.11
Median of two Sorted Arrays 1.11.12
Sart x 1.11.13
Wood Cut 1.11.14
Math and Bit Manipulation 1.12
Single Number 1.12.1
Single Number Il 1.12.2
Single Number I 1.12.3
01 Check Power of 2 1.124
Convert Integer A to Integer B 1.12.5
Factorial Trailing Zeroes 1.12.6
Unique Binary Search Trees 1.12.7
Update Bits 1.12.8
Fast Power 1.12.9
Hash Function 1.12.10
Count 1 in Binary 1.12.11
Fibonacci 1.12.12
A plus B Problem 1.12.13
Print Numbers by Recursion 1.12.14
Majority Number 1.12.15
Majority Number Il 1.12.16
Majority Number 1l 1.12.17
Digit Counts 1.12.18
Ugly Number 1.12.19
Plus One 1.12.20
Linked List 1.13
Remove Duplicates from Sorted List 1.13.1
Remove Duplicates from Sorted List Il 1.13.2
Remove Duplicates from Unsorted List 1.13.3
Partition List 1.13.4
Add Two Numbers 1.13.5
Two Lists Sum Advanced 1.13.6
Remove Nth Node From End of List 1.13.7
Linked List Cycle 1.13.8
Linked List Cycle Il 1.13.9
Reverse Linked List 1.13.10
Reverse Linked List Il 1.13.11
Merge Two Sorted Lists 1.13.12
Merge k Sorted Lists 1.13.13

Reorder List

Copy List with Random Pointer
Sort List

Insertion Sort List

Palindrome Linked List

Delete Node in the Middle of Singly Linked List

LRU Cache

Rotate List

Swap Nodes in Pairs

Remove Linked List Elements
Binary Tree

Binary Tree Preorder Traversal

Binary Tree Inorder Traversal

Binary Tree Postorder Traversal

Binary Tree Level Order Traversal

Binary Tree Level Order Traversal Il

Maximum Depth of Binary Tree

Balanced Binary Tree

Binary Tree Maximum Path Sum

Lowest Common Ancestor

Invert Binary Tree

Diameter of a Binary Tree

Construct Binary Tree from Preorder and Inorder Traversal

Construct Binary Tree from Inorder and Postorder Traversal

Subtree
Binary Tree Zigzag Level Order Traversal
Binary Tree Serialization

Binary Search Tree
Insert Node in a Binary Search Tree
Validate Binary Search Tree
Search Range in Binary Search Tree
Convert Sorted Array to Binary Search Tree
Convert Sorted List to Binary Search Tree
Binary Search Tree lterator

Exhaustive Search
Subsets
Unique Subsets
Permutations
Unique Permutations
Next Permutation
Previous Permuation

Permutation Index

1.13.14
1.13.15
1.13.16
1.13.17
1.13.18
1.13.19
1.13.20
1.13.21
1.13.22
1.13.23

1.14.1
1.14.2
1.14.3
1.14.4
1.14.5
1.14.6
1.14.7
1.14.8
1.14.9
1.14.10
1.14.11
1.14.12
1.14.13
1.14.14
1.14.15
1.14.16

RN

151

-

152

-

153

-

154

-

155

-

.15.6

[N

.16.1

-

.16.2

-

.16.3

-

.16.4

[N

.16.5

-

.16.6

-

16.7

Permutation Index Il 1.16.8

Permutation Sequence 1.16.9
Unique Binary Search Trees I 1.16.10
Palindrome Partitioning 1.16.11
Combinations 1.16.12
Combination Sum 1.16.13
Combination Sum Il 1.16.14
Minimum Depth of Binary Tree 1.16.15
Word Search 1.16.16
Dynamic Programming 1.17
Triangle 1171
Backpack 1.17.2
Backpack Il 1.17.3
Minimum Path Sum 1.17.4
Unique Paths 1.17.5
Unique Paths Il 1.17.6
Climbing Stairs 1.17.7
Jump Game 1.17.8
Word Break 1.17.9
Longest Increasing Subsequence 1.17.10
Palindrome Partitioning Il 1.17.11
Longest Common Subsequence 11712
Edit Distance 1.17.13
Jump Game |l 1.17.14
Best Time to Buy and Sell Stock 1.17.15
Best Time to Buy and Sell Stock I 1.17.16
Best Time to Buy and Sell Stock IlI 11717
Best Time to Buy and Sell Stock IV 1.17.18
Distinct Subsequences 1.17.19
Interleaving String 1.17.20
Maximum Subarray 1.17.21
Maximum Subarray I 1.17.22
Longest Increasing Continuous subsequence 1.17.23
Longest Increasing Continuous subsequence Il 1.17.24
Egg Dropping Puzzle 1.17.25
Maximal Square 1.17.26
Graph 1.18
Find the Connected Component in the Undirected Graph 1.18.1
Route Between Two Nodes in Graph 1.18.2
Topological Sorting 1.18.3
Word Ladder 1.18.4
Bipartial Graph Part | 1.18.5

Data Structure 1.19

Implement Queue by Two Stacks 1.19.1
Min Stack 1.19.2
Sliding Window Maximum 1.19.3
Longest Words 1.19.4
Heapify 1.19.5
Kth Smallest Number in Sorted Matrix 1.19.6
Problem Misc 1.20
Nuts and Bolts Problem 1.20.1
String to Integer 1.20.2
Insert Interval 1.20.3
Merge Intervals 1.20.4
Minimum Subarray 1.20.5
Matrix Zigzag Traversal 1.20.6
Valid Sudoku 1.20.7
Add Binary 1.20.8
Reverse Integer 1.20.9
Gray Code 1.20.10
Find the Missing Number 1.20.11
N Queens 1.20.12
N Queens Il 1.20.13
Minimum Window Substring 1.20.14
Continuous Subarray Sum 1.20.15
Continuous Subarray Sum Il 1.20.16
Longest Consecutive Sequence 1.20.17
Part Ill - Contest 1.21
Google APAC 1.22
APAC 2015 Round B 1.221
Problem A. Password Attacker 1.22.11
APAC 2016 Round D 1.22.2
Problem A. Dynamic Grid 1.22.21
Microsoft 1.23
Microsoft 2015 April 1.23.1
Problem A. Magic Box 1.23.1.1
Problem B. Professor Q's Software 1.231.2
Problem C. Islands Travel 1.23.1.3
Problem D. Recruitment 1.23.14
Microsoft 2015 April 2 1.23.2
Problem A. Lucky Substrings 1.23.2.1
Problem B. Numeric Keypad 1.23.2.2
Problem C. Spring Outing 1.23.2.3
Microsoft 2015 September 2 1.23.3

Problem A. Farthest Point 1.23.3.1

Appendix | Interview and Resume 1.24
Interview 1.241
Resume 1.24.2

Appendix Il System Design 1.25
The System Design Process 1.25.1
Statistics 1.25.2
System Architecture 1.25.3
Scalability 1.254

Tags 1.26

Data Structure and Algorithm/leetcode/lintcode

e English via Data Structure and Algorithm notes
o RIIRP SUE B 4038 451 5 F- ik /leetcodellintcode A A7
o M P IGHFHARE TAH ML F K/leetcodellintcode Al A#

Introduction

This work is some notes of learning and practicing data structures and algorithm.

1. Part | is some brief introduction of basic data structures and algorithm, such as, linked lists, stack, queues, trees,
sorting and etc.

2. Part Il is the analysis and summary of programming problems, and most of the programming problems come from
https://leetcode.com/, http://www.lintcode.com/, http://www.geeksforgeeks.org/, http://hihocoder.com/,
https://www.topcoder.com/.

3. Part Il is the appendix of resume and other supplements.

This project is hosted on https:/github.com/billryan/algorithm-exercise and rendered by Gitbook. You can star the repository
on the GitHub to keep track of updates. Another choice is to subscribe channel #github_commit via Slack https://ds-

algo.slack.com/messages/github_commit/. RSS+eeeHsunderdevelopment

Feel free to access http://slackin4ds-algo.herokuapp.com for Slack invite automation.
You can view/search this document online or offline, feel free to read it. :)

e Online(Rendered by Gitbook): http://algorithm.yuanbin.me

o Offline(Compiled by Gitbook and Travis-Cl):
1. EPUB: GitHub, Gitbook, - 4+ CDN(¥ 2 X [% 7] /7 i&) - Recommended for iPhone/iPad/MAC
2. PDF: GitHub, Gitbook, £ 4 CDN(E X % /il 7 i& i) - Recommended for Desktop
3. MOBI: GitHub, Gitbook, 4 - CDN(¥ E X % Al 7 i) - Recommended for Kindle

e Site Search via Google: keywords site:algorithm.yuanbin.me

o Site Search via Swiftype: Click search this site on the right bottom of webpages

License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of
this license, please visit http://creativecommons.org/licenses/by-sa/4.0/

Contribution

e English is maintained by @billryan
e [~ F T is maintained by @billryan, @Shaunwei

B

e H2 % is maintained by @CrossLuna

Other contributors can be found in Contributors to algorithm-exercise

Donation

ARMABZAW > BXATR TAXH > TAFRARB R » LT AL HITH)

https://travis-ci.org/billryan/algorithm-exercise
https://slackin4ds-algo.herokuapp.com/
https://ds-algo.slack.com/
http://algorithm.yuanbin.me/en/index.html
http://algorithm.yuanbin.me/zh-hans/index.html
http://algorithm.yuanbin.me/zh-tw/index.html
https://leetcode.com/
http://www.lintcode.com/
http://www.geeksforgeeks.org/
http://hihocoder.com/
https://www.topcoder.com/
https://github.com/billryan/algorithm-exercise
https://www.gitbook.com/book/yuanbin/algorithm/details
https://ds-algo.slack.com/messages/github_commit/
http://slackin4ds-algo.herokuapp.com
http://algorithm.yuanbin.me
https://github.com/sign4bill/algorithm-exercise/tree/deploy/epub
https://www.gitbook.com/download/epub/book/yuanbin/algorithm
http://7xojrx.com1.z0.glb.clouddn.com/docs/algorithm-exercise/algorithm-ebook_en.epub
https://github.com/sign4bill/algorithm-exercise/tree/deploy/pdf
https://www.gitbook.com/download/pdf/book/yuanbin/algorithm
http://7xojrx.com1.z0.glb.clouddn.com/docs/algorithm-exercise/algorithm-ebook_en.pdf
https://github.com/sign4bill/algorithm-exercise/tree/deploy/mobi
https://www.gitbook.com/download/mobi/book/yuanbin/algorithm
http://7xojrx.com1.z0.glb.clouddn.com/docs/algorithm-exercise/algorithm-ebook_en.mobi
http://creativecommons.org/licenses/by-sa/4.0/
http://algorithm.yuanbin.me/en/index.html
https://github.com/billryan
http://algorithm.yuanbin.zh-hans/index.html
https://github.com/billryan
https://github.com/Shaunwei
http://algorithm.yuanbin.me/zh-tw/index.html
https://github.com/CrossLuna
https://github.com/billryan/algorithm-exercise/graphs/contributors

oA A4S A

@billryan &SR EEMAEH > kHF TE~ MFHETAMFTE LavaE a2 RTRE LRAEESH307 WA T &
®o©

S

BT ORF U R RIE T A E A B 54 45 TAkE > @billryan K363 L ¥ -

A=

Wk P % @ yuanbin2014(at)gmail.com 2 %1 4 &

Wechat

PayPal

Wk P % : yuanbin2014(at)gmail.com & % 4 & » 4+ 38 4% friends and family
BAEE s UTLERETHIAIAGE ARLELRRGRNm > TATRARN L H2EZ &5 A A EXET

REA % 0 IR IE o

® taoli***@gmail.com , 20
e #xI&* 6.66

® wen***@126.com , 20.16

® she***@163.com , 10

o i+ ,20
e &*,50
e x*,20

e don***@163.com , 5
® 129***@qq.com , 50
® 130****9675 , 5

® Tong W*** ,20 $

® ee.***@gmail.com , 6.66

FTA%48 2 M T 4 CDN ¥4 % /%5 Contributors 5 it £ 4789 R 5/ £ 4 45 /89 N4k

To Do

e []add multiple languages support, currently % %8 F sC, # & ¥ T are available
e [x] explore nice writing style

e [x] add implementations of Python , c++, Java code

e [x] add time and space complexity analysis

e [x] summary of basic data structure and algorithm

e [x] add CSS for online website http://algorithm.yuanbin.me

e [x] add proper Chinese fonts for PDF output

http://algorithm.yuanbin.me

FAQ - Frequently Asked Question

Some guidelines for contributing and other questions are listed here.

How to Contribute?

e Access Guidelines for Contributing for details.

http://algorithm.yuanbin.me/en/faq/guidelines_for_contributing.html

Guidelines for Contributing

e Access English via Guidelines for Contributing
o FHILHMBY Al dh
o HIKT AP THh

http://algorithm.yuanbin.me/en/faq/guidelines_for_contributing.html
http://algorithm.yuanbin.me/zh-tw/faq/guidelines_for_contributing.html
http://algorithm.yuanbin.zh-hans/faq/guidelines_for_contributing.html

Part | - Basics

The first part summarizes some of the main aspects of data structures and algorithms, such as implementation and usage.

This chapter consists of the following sections.

Reference

e VisuAlgo - Animated visualizations of data structures and algorithms
e Data Structure Visualizations - An alternative to VisuAlgo
e Sorting Algorithms - Animations comparing various sorting algorithms

http://visualgo.net/
http://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://www.toptal.com/developers/sorting-algorithms/

Data Structure

This chapter describes the fundamental data structures and their implementations.

String

String-related problems often appear in interview questions. In actual development, strings are also frequently used.
Summarized here are common uses of strings in C++, Java, and Python.

Python

sl = str()
in python, “''® and """' are the same
s2 = "shaunwei" # 'shaunwei'

s2len = len(s2)

last 3 chars

s2[-3:] # wei

s2[5:8] # wei

s3 = s2[:5] # shaun

s3 += 'wel' # return 'shaunwei'

list in python is same as ArrayList in java
s2list = list(s3)

+ string at index 4

s2[4] # 'n'

find index at first

s2.index('w') # return 5, if not found, throw ValueError
s2.find('w') # return 5, if not found, return -1

In Python, there's no StringBuffer or StringBuilder. However, string manipulations are fairly efficient already.

Java

String s1 = new String();

String s2 = "billryan";

int s2Len = s2.length();

s2.substring(4, 8); // return "ryan"

StringBuilder s3 = new StringBuilder(s2.substring(4, 8));
s3.append("bill");

String s2New = s3.toString(); // return "ryanbill"

// convert String to char array

char[] s2Char = s2.toCharArray();

// char at index 4

char ch = s2.charAt(4); // return 'r'

// find index at first

int index = s2.indexOf('r'); // return 4. if not found, return -1

The difference between StringBuffer and StringBuilder is that the former guarantees thread safety. In a single-threaded
environment, StringBuilder is more efficient.

Quick Sort

In essence, quick sort is an application of divide and conquer strategy. There are usually three steps:

Step1. Pick a pivot -- a random element. Step2. Partition -- put the elements smaller than pivot to its left and greater ones
to its right. Step3. Recurse -- apply above steps until the whole sequence is sorted.

out-in-place implementation

Recursive implementation is easy to understand and code. Python 1ist comprehension looks even nicer:

def g
print(alist)
if len(alist) <=
return alist
elser
pivot = alist[0]
return gsortil([x for x in alist[1:] if x < pivot]) + \
[pivot] + \
gsortil([x for x in alist[1:] if x >= pivot])

unsortedArray = [6, 5, 3, 1, 8, 7, 2, 4]
print(gsorti(unsortedArray))

The output :

[6, 5, 3, 1, 8, 7, 2, 4]
[5, 3, 1, 2, 4]

[3, 1, 2, 4]

(1, 2]

(1

[2]

[4]

(1

(8, 71

[7]

(1

[1, 2, 3, 4, 5,6, 7, 8]

Despite of its simplicity, above quick sort code is not that 'quick’: recursive calls keep creating new arrays which results in
high space complexity. So 1ist comprehension is not proper for quick sort implementation.

Complexity
Take a quantized look at how much space it actually cost.

In the best case, the pivot happens to be the median value, and quick sort partition divides the sequence almost equally,
so the recursions' depth is logn . As to the space complexity of each level (depth), it is worth some discussion.

A common mistake can be: each level contains »n elements, then the space complexity is surely O(n) . The answer is right,
while the approach is not. As we know, space complexity is usually measured by memory consumption of a running
program. Take above out-in-place implementation as example, in the best case, each level costs half as much memory
as its upper level does . Sums up to be:

di—om = 21

For more detail, refer to the picture below as well as above python code. The first level of recursion saves 8 values, the
second 4, and so on so forth.

In the worst case, it will take 7 — 1 times of swap on level i. Sums up to be:

Yron—it1)= O(n?)

2 CR?/

in-place implementation

one index for partition

One in-place implementation of quick sort is to use one index for partition, as the following image illustrates. Take example
of [6, 5, 3, 1, 8, 7, 2, 4] again,l and u stand for the lower bound and upper bound of index respectively. i traverses

and m maintains index of partition which varies with i. target is the pivot.

Quick Sort

For each specific value of ¢, z[¢] will take one of the follwing cases: if z[i] > t , ¢ increases and goes on traversing; else if
z[i] < t, z[¢] will be swapped to the left part, as statement swap(x[++m], x[i]) does. Partition is done when i == u , and
then we apply quick sort to the left and right parts, recursively. Under what circumstance does recursion terminate? Yes, 1

>= u .

Python

#1/usr/bin/env python

def gsort2(alist, 1, u):
print(alist)
if 1 >= u:
return

m=1
for i in xrange(l + 1, u + 1):
if alist[i] < alist[1]:
m+= 1
alist[m], alist[i] = alist[i], alist[m]
swap between m and 1 after partition, important!
alist[m], alist[1l] = alist[1l], alist[m]
gsort2(alist, 1, m - 1)
gsort2(alist, m + 1, u)

unsortedArray = [6, 5, 3, 1, 8, 7, 2, 4]
print(gsort2(unsortedArray, ©, len(unsortedArray) - 1))

Java

19

public class Sort {
public static void main {
int unsortedArray[] = new int[]{6, 5, 3, 1, 8, 7, 2, 4};
quickSort(unsortedArray);
System.out.println("After sort: ");
for (int item : unsortedArray) {

System.out.print(item + " ");
}
}
public static void quickSorti(int int int {
for (int item : array) {
System.out.print(item + " ");
}
System.out.println();
if (1 >= u) return;
int m = 1;
for (int i =1 + 1; i <= u; i++) {
if (array[i] < array[l]) {
m+= 1;
int temp = array[m];
array[m] = array[i];
array[i] = temp;
}
}
// swap between array[m] and array[l]
// put pivot in the mid
int temp = array[m];
array[m] = array[1l];
array[l] = temp;
quickSorti(array, 1, m - 1);
quickSorti(array, m + 1, u);
}
public static void quickSort(int {
quickSorti(array, 0, array.length - 1);
}

The swap of z[:] and z[m] should not be left out.

The output:
[6, 5, 3, 1, 8, 7, 2, 4]
[4, 5, 3, 1, 2, 6, 8, 7]
[2, 38, 1, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 8, 7]
[1, 2, 3, 4, 5, 6, 7, 8]
[1, 2, 3, 4, 5, 6, 7, 8]

Two-way partitioning

Another implementation is to use two indexes for partition. It speeds up the partition by working two-way simultaneously,
both from lower bound toward right and from upper bound toward left, instead of traversing one-way through the sequence.

The gif below shows the complete processon [e6, 5, 3, 1, 8, 7, 2, 4] .

6 5 3 1 8 7 2 4

1. Take 3 as the pivot.

2. Let pointer 10 start with number 6 and pointer hi start with number 4 . Keep increasing 1o until it comes to an
element = the pivot, and decreasing hi until it comes to an element < the pivot. Then swap these two elements.

3. Increase 1o and decrease hi (both by 1), and repeat step 2 so that 10 comesto 5 and hi comesto 1 .Swap
again.

4. Increase 1lo and decrease hi (both by 1) until they meet (at 3). The partition for pivot 3 ends. Apply the same
operations on the left and right part of pivot 3 .

A more general interpretation:

1. Init7 and j to be at the two ends of given array.
2. Take the first element as the pivot.
3. Perform partition, which is a loop with two inner-loops:
o One that increases i, until it comes to an element = pivot.
o The other that decreases j, until it comes to an element < pivot.
4. Check whether : and j meet or overlap. If so, swap the elements.

Think of a sequence whose elements are all equal. In such case, each partition will return the middle element, thus

recursion will happen logn times. For each level of recursion, it takes n times of comparison. The total comparison is nlogn
then programming_pearls

Python

print(alist)
if lower >= upper:
return

pivot = alist[lower]
left, right = lower + 1, upper
while left <= right:
while left <= right and alist[left] < pivot:
left +=
while left <= right and alist[right] >= pivot:
right -=
if left > right:
break

alist[left], alist[right] = alist[right], alist[left]
alist[lower], alist[right] = alist[right], alist[lower]

gsort3(alist, lower, right - 1)
gsort3(alist, right + 1, upper)

unsortedArray = [6, 5, 3, 1, 8, 7, 2, 4]
print(gsort3(unsortedArray, 0, len(unsortedArray) - 1))

Java

public class Sort {
public static void main {
int unsortedArray[] = new int[]{6, 5, 3, 1, 8, 7, 2, 4};
quickSort(unsortedArray);
System.out.println("After sort: ");
for (int item : unsortedArray) {
System.out.print(item + " ");

public static void quickSort2(int int int {
for (int item : array) {
System.out.print(item + " ");

}
System.out.println();

if (1 >= u) return;
int pivot = array[l];
int left = 1 + 1;
int right = u;
while (left <= right) {
while (left <= right && array[left] < pivot) {
left++;
}
while (left <= right && array[right] >= pivot) {
right--;
}
if (left > right) break;
// swap array[left] with array[right] while left <= right
int temp = array[left];
array[left] = array[right];
array[right] = temp;
}
/* swap the smaller with pivot */
int temp = array[right];
array[right] = array[1];
array[l] = temp;

quickSort2(array, 1, right - 1);
quickSort2(array, right + 1, u);

public static void quickSort(int {
quickSort2(array, 0, array.length - 1);

The output:

(6,
[2,
[1,
[1,
[1,
[1,
[1,
[1,
(1,
(1,
[1,

4]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]

MMMMMPMNNWW
WWWwwwWwwww W
AA MMM OO ORR
LIS IS I I B N S N -
0707070707907070')0'7\1
NNNSNSNSNSNSNSNSDN

Having analyzed three implementations of quick sort, we may grasp one key difference between quick sort and merge sort :

1. Merge sort divides the original array into two sub-arrays, and merges the sorted sub-arrays to form a totally ordered
one. In this case, recursion happens before processing(merging) the whole array.

2. Quick sort divides the original array into two sub-arrays, and then sort them. The whole array is ordered as soon as the
sub-arrays get sorted. In this case, recursion happens after processing(partition) the whole array.

Robert Sedgewick's presentation on quick sort is strongly recommended.

Reference

Quicksort - wikepedia

Quicksort | Robert Sedgewick

Programming Pearls Column 11 Sorting - gives an in-depth discussion on insertion sort and quick sort

Quicksort Analysis

programming_pearls p.,oamming Pearls «

http://algs4.cs.princeton.edu/23quicksort/
https://en.wikipedia.org/wiki/Quicksort
http://algs4.cs.princeton.edu/23quicksort/
http://7xojrx.com1.z0.glb.clouddn.com/docs/algorithm-exercise/docs/quicksort_analysis.pdf

String

String

String related topics are discussed in this chapter.

In order to re-use most of the memory of an existing data structure, internal implementation of string is immutable in
most programming languages(Java, Python). Take care if you want to modify character in place.

24

strStr

Question

e leetcode: Implement strStr() | LeetCode OJ
e lintcode: lintcode - (13) strstr

Problem Statement

For a given source string and a target string, you should output the first index(from 0) of target string in source string.

If target does not exist in source, just return -1 .

Example
If source = "source" and target= "target" ,return -1 .

If source = "abcdabcdefg" and target= "bcd" , return 1 .

Challenge

O(n2) is acceptable. Can you implement an O(n) algorithm? (hint: KMP)

Clarification

Do | need to implement KMP Algorithm in a real interview?

e Not necessary. When you meet this problem in a real interview, the interviewer may just want to test your basic
implementation ability. But make sure your confirm with the interviewer first.

Problem Analysis

It's very straightforward to solve string match problem with nested for loops. Since we must iterate the target string, we can
optimize the iteration of source string. It's unnecessary to iterate the source string if the length of remaining part does not
exceed the length of target string. We can only iterate the valid part of source string. Apart from this naive algorithm, you
can use a more effective algorithm such as KMP.

Python

class
def 3
if source is None or target is None:
return

for i in range(len(source) - len(target) + 1):
for j in range(len(target)):
if source[i + j] != target[j]:
break
else:
return i
return

https://leetcode.com/problems/implement-strstr/
http://www.lintcode.com/en/problem/strstr/

int strStr(char char {

if (haystack == || needle ==) return H
const int len_h = (haystack);
const int len_n = (needle);
for (int 1 = 0; 1 < len_h - len_n + 1; i++) {
int j = 0;

for (; j < len_n; j++) {
if (haystack[i+j] != needle[j]) {

break;
}

}

if (j == len_n) return i;
}
return -1;

3
C++

class Solution {
public:
int strsStr {

if (haystack.empty() && needle.empty()) return 0;
if (haystack.empty()) return ;
if (needle.empty()) return 0;
// in case of overflow for negative
if (haystack.size() < needle.size()) return 5

for (int i = 0; i < haystack.size() - needle.size() + 1; i++) {
risize_type j = 0;
for (; j < needle.size(); j++) {
if (haystack[i + j] != needle[j]) break;
}

if (j == needle.size()) return i;

return g

Java

public class Solution {
public int strStr {
if (haystack == null && needle == null) return 0;
if (haystack == null) return -1;
if (needle == null) return 0;

for (int i = 0; i < haystack.length() - needle.length() + 1; i++) {
int j = 0;
for (; j < needle.length(); j++) {
if (haystack.charAt(i+j) !'= needle.charAt(j)) break;

3
if (j == needle.length()) return i;

return -1;

Source Code Analysis

1. corner case: haystack(source) and needle(target) may be empty string.

2. code convention:
o space is needed for ==
o use meaningful variable names
o put a blank line before declaration int i, j;
3. declare j outside for loop if and only if you want to use it outside.

Some Pythonic notes: 4. More Control Flow Tools section 4.4 and if statement - Why does python use 'else' after for and
while loops?

Complexity Analysis

nested for loop, O((n — m)m) for worst case.

https://docs.python.org/3/tutorial/controlflow.html
http://stackoverflow.com/questions/9979970/why-does-python-use-else-after-for-and-while-loops

Partition Array by Odd and Even

Question

e lintcode: (373) Partition Array by Odd and Even
e Segregate Even and Odd numbers - GeeksforGeeks
Partition an integers array into odd number first and even number second.

Example
Given [1, 2, 3, 4], return [1, 3, 2, 4]

Challenge
Do it in-place.

Solution

Use two pointers to keep the odd before the even, and swap when necessary.

Java

public class Solution {
/o

* @)
(

param nums: an array of integers

*

@return: nothing

x/
public void partitionArray(int {
if (nums == null) return;

int left = 0, right = nums.length -
while (left < right) {
// odd number
while (left < right && nums[left] % 1= 0) {
left++;

’

}
// even number
while (left < right && nums[right] % 2 == 0) {
right--;
}
// swap
if (left < right) {
int temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;

C++

http://www.lintcode.com/en/problem/partition-array-by-odd-and-even/
http://www.geeksforgeeks.org/segregate-even-and-odd-numbers/

void int {
if (nums.empty()) return;

int i=0, j=nums.size()-1;
while (i<j) {

while (i<j && nums[i]%2!=0) i++;
while (i<j && nums[]j]%2==0) j--;
if (i '= j) swap(nums[i], nums[j]);

Src Code Analysis

Be careful not to forget 1eft < right in while loop condition.

Complexity

To traverse the array, time complexity is O(n). And maintain two pointers mean O(1) space complexity.

Kth Largest Element in an Array

Tags: Quick Sort, Divide and Conquer, Medium

Question

e leetcode: (215) Kth Largest Element in an Array
e lintcode: (5) Kth Largest Element

Problem Statement

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth
distinct element.

For example,
Given [3,2,1,5,6,4] and k =2, return 5.

Note:
You may assume K is always valid, 1 < k < array's length.

Credits:

Special thanks to @mithmatt for adding this problem and creating all test cases.

Solution

Trail and error: Comparison-based sorting algorithms don't work because they incur O(n2) time complexity. Neither does
Radix Sort which requires the elements to be in a certain range. In fact, Quick Sort is the answer to kth largest problems
(Here are code templates of quick sort).

By quick sorting, we get the final index of a pivot. And by comparing that index with « , we decide which side (the greater
or the smaller) of the pivot to recurse on.

Java

https://leetcode.com/problems/kth-largest-element-in-an-array/
http://www.lintcode.com/en/problem/kth-largest-element/
https://leetcode.com/discuss/user/mithmatt
http://algorithm.yuanbin.me/zh-hans/basics_sorting/quick_sort.html

public class Solution {

public int findKthLargest(int int {
if (nums == null || nums.length == 0) {
return Integer.MIN_VALUE;
}
int kthLargest = gSort(nums, O, nums.length - 1, k);
return kthLargest;
}
private int gSort(int int int int {
if (left >= right) {
return nums[right];
}
int m = left;
for (int i = left + 1; i <= right; i++) {
if (nums[i] > nums[left]) {
m++;
swap(nums, m, i);
}
}
swap(nums, m, left);
if (k ==m+ 1) {
return nums[m];
} else if (k >m + 1) {
return gSort(nums, m + 1, right, k);
} else {
return gSort(nums, left, m - 1, k);
}
}
private void swap(int int int {
int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp;
}
}
Src Code Analysis

Two cases when the recursion ceases: a. left bound equals right bound; b. final index of pivot equals K.

Since 'Kth largest' is wanted, numbers greater than pivot are placed to the left and numbers smaller to the right, which is a
little different with typical quick sort code.

Complexity

Time Complexity. Worse case (when the array is sorted): n+n-1+...+1=0(n"2) . Amortized complexity: n + n/2 + n/4
+...+1=0(2n)=0(n) .

Space complexity is O(1) .

Search in Rotated Sorted Array

Question

e leetcode: (33) Search in Rotated Sorted Array
e lintcode: (62) Search in Rotated Sorted Array

Problem Statement

Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i,e., 124567 mightbecome 456 7012).
You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

Example
For [4, 5, 1, 2, 3] and target=1,return 2 .

For [4, 5, 1, 2, 3] and target=0 ,return -1 .
Challenge

O(logN) time

Solution1 - work on sorted subarray

Draw it. Rotated sorted array will take one of the following two forms:

Binary search does well in sorted array, while this problem gives an unordered one. Be patient. It is actually a combination
of two sorted subarrayss. The solution takes full advantage of this. BTW, another approach can be comparing target with
A[mid] , but dealing with lots of cases is kind of sophisticated.

C++

https://leetcode.com/problems/search-in-rotated-sorted-array/
http://www.lintcode.com/en/problem/search-in-rotated-sorted-array/

Search in Rotated Sorted Array

Jxx
* ARHEforkA
* http://www.jiuzhang.com/solutions/search-in-rotated-sorted-array/
*/
class Solution {
Jxx
* param A : an integer ratated sorted array

* param target : an integer to be searched
* return : an integer
*/

public:

int search(vector<int> &A, int target) {

if (A.empty()) {
return -1;

vector<int>::size_type start = 0;
vector<int>::size_type end = A.size() - 1;
vector<int>::size_type mid;

while (start + 1 < end) {

mid = start + (end - start) / 2;

if (target == A[mid]) {
return mid;

}

if (A[start] < A[mid]) {
// situation 1, numbers between start and mid are sorted
if (A[start] <= target && target < A[mid]) {

end = mid;
} else {
start = mid;
}
} else {

// situation 2, numbers between mid and end are sorted
if (A[mid] < target && target <= A[end]) {

start = mid;
} else {

end = mid;

if (A[start] == target) {
return start;

}
if (A[end] == target) {
return end;

}

return -1;

Java

33

public class {

public int int int {
if (A == null || A.length == 0) return -1;
int 1b = 0, ub = A.length - 1;

while (1b + 1 < ub) {
int mid = 1b + (ub - 1b) / 2;
if (A[mid] == target) return mid;

if (A[mid] > A[1lb]) {

if (A[1lb] <= target && target <= A[mid]) {

ub = mid;
} else {
1b = mid;
}
} else {

if (A[mid] <= target && target <= A[ub]) {

1b = mid;
} else {
ub = mid;

}

}

if (A[1lb] == target) {
return lb;

} else if (A[ub] == target) {
return ub;

}

return -1;

Source Code Analysis

1. If target == A[mid] , just return.

2. Observe the two sorted subarrays, we can find that the least one of the left is greater than the biggest of the right. So if
A[start] < A[mid] , then interval [start, mid] will be sorted.

Do binary search on A[start] ~ A[mid] on condition that A[start] <= target <= A[mid] .

Or do binary search on A[mid]~A[end] on condition that A[mid] <= target <= A[end] .

If while loop ends and none A[mid] hits, then examine A[start] and A[end] .

Return -1 if target is not found.

S

Complexity

The time complexity is approximately O(log n).

Solution2 - double binary search

Do binary search twice: first on the given array to find the break point; then on the proper piece of subarray to search for
the target.

It may take a small step to see why the given array is binary-searchable. Though a rotated array itself is neither sorted nor
monotone, there is implicit monotonicity. All elements on the left of break point are 2A[0], and those on the right of break
point are <A[0]. In a binary search, we keep narrowing the search scope by dropping the left or right half of the sequence,

and here in the rotated array, we can do that much similarly.

To formalize, define an array A' that A'[i] = A[i] < A[0] ? true : false .If A is [4, 5,6, 7, 0, 1, 2], A" willbe
[false, false, false, false, true, true, true] . Surely A' monotone.

Java

public class Solution {

Jr
*@param A : an integer rotated sorted array
*@param target : an integer to be searched
*return : an integer
*/

public int search(int[] A, int target) {

if (A == null || A.length == 0) {
return -1;

int p = findBreakPoint(A);
if (target >= A[0]) {
// search in [lo, segPoint]
return binSearch(A, target, 0, p);
} else {
// search in [segPoint, hi]
return binSearch(A, target, p, A.length - 1);

private int findBreakPoint(int[] A) {
// A[index] < A[Q], min[index]
int index;

int lo = 0, hi = A.length - 1, segvalue = A[0];
while (lo + 1 < hi) {

int md = lo + (hi - lo)/2;

if (A[md] > segvalue) {

lo = md;
} else {
hi = md;

}

index = A[lo] < segvalue ? lo : hi;

return index;

private int binSearch(int[] A, int target, int lo, int hi) {
while (lo + 1 < hi) {
int md = lo + (hi - lo) / 2;
if (A[md] == target) {
lo = md;
} else if (A[md] < target) {
lo = md;
} else {

hi = md;

if (A[lo] == target) {
return lo;

}

if (A[hi] == target) {
return hi;

}

return -1;

Complexity

The first binary search costs O(log n) time complexity, and the second costs no more than O(log n).

Linked List

This section includes common operations on linked list, such as deletion, insertion, and merging.
Frequently made mistakes:

e Not updating runner-node when traversing linked list
e Not recording head node before traversing
e returning incorrect pointer to node

The image below serves as a summarization.

Iinsertion sort

merge sort

delate all dup

merge two / aoed
{ detele all dup but one
merge N I m N

specified value
Deletion

all dup but one
/ unsortad

n-th from end of list
reverse all Linked List

reverse range Reverse
tesify palindrome
swap in pairs
reverse-order

tesify cycle
m | find entry of cycle

a trivial node

Deep copy

Reverse Linked List

Question

e leetcode: (206) Reverse Linked List | LeetCode OJ
e lintcode: (35) Reverse Linked List

Reverse a linked list.

Example
For linked list 1->2->3, the reversed linked list is 3->2->1

Challenge
Reverse it in-place and in one-pass

Solution1 - Non-recursively

It would be much easier to reverse an array than a linked list, since array supports random access with index, while singly
linked list can ONLY be operated through its head node. So an approach without index is required.

Think about how '1->2->3' can become '3->2->1". Starting from '1', we should turn '1->2" into '2->1', then '2->3' into '3->2',
and so on. The key is how to swap two adjacent nodes.

temp = head -> next;
head->next = prev;
prev = head;

head = temp;

The above code maintains two pointer, prev and head , and keeps record of next node before swapping. More detailed
analysis:

https://leetcode.com/problems/reverse-linked-list/
http://www.lintcode.com/en/problem/reverse-linked-list/

Reverse Linked List

. Keep record of next node

. change head->next t0 prev

. update prev with head , to keep moving forward

. update head with the record in step 1, for the sake of next loop

Python

Reverse Linked List

Definition for singly-linked list.

class ListNode:

#
#
#

def __init_ (self, x):
self.val = x
self.next = None

class Solution:

@param {ListNode} head
@return {ListNode}
def reverseList(self, head):
prev = None
curr = head
while curr is not None:
temp = curr.next
curr.next = prev
prev = curr
curr = temp
fix head
head = prev

return head

C++

/

* %
*
*
*
*
*

*

*/

Definition for singly-linked list.
struct ListNode {

int val;

ListNode *next;

ListNode(int x) : val(x), next(NuLL) {}
};

class Solution {
public:

ListNode* reverse(ListNode* head) {
ListNode *prev = NULL;
ListNode *curr = head;
while (curr != NULL) {
ListNode *temp = curr->next;
curr->next = prev;
prev = curr;
curr = temp;
}
// fix head
head = prev;

return head;

Java

40

public class {
public ListNode {

ListNode prev = null;

ListNode curr = head;

while (curr != null) {
ListNode temp = curr.next;
curr.next = prev;
prev = curr;
curr = temp;

}
head = prev;

return head;

Source Code Analysis

Already covered in the solution part. One more word, the assignment of prev is neat and skilled.

Complexity

Traversing the linked list leads to O(n) time complexity, and auxiliary space complexity is O(1).

Solution2 - Recursively

Three cases when the recursion ceases:

1. If given linked list is null, just return.

2. If given linked list has only one node, return that node.

3. If given linked list has at least two nodes, pick out the head node and regard the following nodes as a sub-linked-list,
swap them, then recurse that sub-linked-list.

Be careful when swapping the head node (refer as nodey) and head of the sub-linked-list (refer as nodex): First, swap
nodey and nodex ; Second, assign null to nodey->next (or it would fall into infinite loop, and tail of result list won't point
to nuil).

Python

Reverse Linked List

Definition of ListNode
class ListNode(object):

def __init_ (self, val, next=None):
self.val = val
self.next = next

class Solution:
i
@param head: The first node of the linked list.
@return: You should return the head of the reversed linked list.
Reverse it in-place.
win
def reverse(self, head):
casel: empty list
if head is None:
return head
case2: only one element list
if head.next is None:
return head
case3: reverse from the rest after head
newHead = self.reverse(head.next)
reverse between head and head->next
head.next.next = head
unlink list from the rest
head.next = None

return newHead

C++

/**
* Definition of ListNode

*

* class ListNode {

* public:
* int val;
* ListNode *next;
*
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
*}
*/
class Solution {
public:
Jxx

* @param head: The first node of linked list.
* @return: The new head of reversed linked list.
*/
ListNode *reverse(ListNode *head) {
// casel: empty list

if (head == NULL) return head;
// case2: only one element list
if (head->next == NULL) return head;

// case3: reverse from the rest after head
ListNode *newHead = reverse(head->next);
// reverse between head and head->next
head->next->next = head;

// unlink list from the rest

head->next = NULL;

return newHead;

42

Java

Vs
* Definition for singly-linked list.
* public class ListNode {

* int val;

* ListNode next;
* ListNode(int x) { val = x; }
*}
*/
public class Solution {
public ListNode reverse(ListNode head) {
// casel: empty list
if (head == null) return head;
// case2: only one element list
if (head.next == null) return head;
// case3: reverse from the rest after head
ListNode newHead = reverse(head.next);
// reverse between head and head->next
head.next.next = head;
// unlink list from the rest
head.next = null;

return newHead;

Source Code Analysis

case1 and case2 can be combined.What case3 returns is head of reversed list, which means it is exact the same Node (tail
of origin linked list) through the recursion.

Complexity

The depth of recursion: O(n). Time Complexity: O(N). Space Complexity (without considering the recursion stack): O(1).

Reference

o AWM EFFAM MR REEA (Bt i) - AMifo Rt - 1ERE
e data structures - Reversing a linked list in Java, recursively - Stack Overflow

o RitRGEANWATI (BI5EEE > Crt) | TOME WBET

e iteratively and recursively Java Solution - Leetcode Discuss

http://www.cnblogs.com/kubixuesheng/p/4394509.html
http://stackoverflow.com/questions/354875/reversing-a-linked-list-in-java-recursively
http://ceeji.net/blog/reserve-linked-list-cpp/
https://leetcode.com/discuss/37804/iteratively-and-recursively-java-solution

Tags

	Preface
	FAQ
	Guidelines for Contributing

	Part I - Basics
	Basics Data Structure
	String
	Quick Sort

	String
	strStr
	Partition Array by Odd and Even
	Kth Largest Element
	Search in Rotated Sorted Array

	Linked List
	Reverse Linked List

	Tags

